首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3320篇
  免费   291篇
  国内免费   1篇
  2021年   70篇
  2020年   46篇
  2019年   45篇
  2018年   61篇
  2017年   63篇
  2016年   73篇
  2015年   130篇
  2014年   146篇
  2013年   174篇
  2012年   226篇
  2011年   218篇
  2010年   151篇
  2009年   99篇
  2008年   143篇
  2007年   134篇
  2006年   121篇
  2005年   130篇
  2004年   117篇
  2003年   81篇
  2002年   93篇
  2001年   71篇
  2000年   56篇
  1999年   49篇
  1998年   32篇
  1997年   30篇
  1996年   25篇
  1994年   18篇
  1993年   27篇
  1992年   38篇
  1991年   36篇
  1990年   28篇
  1989年   25篇
  1988年   30篇
  1987年   27篇
  1986年   23篇
  1985年   40篇
  1984年   24篇
  1983年   28篇
  1982年   18篇
  1979年   28篇
  1978年   31篇
  1977年   22篇
  1976年   21篇
  1974年   20篇
  1973年   21篇
  1972年   22篇
  1971年   21篇
  1969年   18篇
  1968年   20篇
  1966年   19篇
排序方式: 共有3612条查询结果,搜索用时 468 毫秒
91.
92.
93.
Evolutionary reversals, including re-evolution of lost structures, are commonly found in phylogenetic studies. However, we lack an understanding of how these reversals happen mechanistically. A snake-like body form has evolved many times in vertebrates, and occasionally a quadrupedal form has re-evolved, including in Brachymeles lizards. We use body form and locomotion data for species ranging from snake-like to quadrupedal to address how a quadrupedal form could re-evolve. We show that large, quadrupedal species are faster at burying and surface locomotion than snake-like species, indicating a lack of expected performance trade-off between these modes of locomotion. Species with limbs use them while burying, suggesting that limbs are useful for burying in wet, packed substrates. Palaeoclimatological data suggest that Brachymeles originally evolved a snake-like form under a drier climate probably with looser soil in which it was easier to dig. The quadrupedal clade evolved as the climate became humid, where limbs and large size facilitated fossorial locomotion in packed soils.  相似文献   
94.
Theories and models attempt to explain how and why particular plant species grow together at particular sites or why invasive exotic species dominate plant communities. As local climates change and human‐use degrades and disturbs ecosystems, a better understanding of how plant communities assemble is pertinent, particularly when restoring grassland ecosystems that are frequently disturbed. One such community assembly theory is priority effects, which suggests that arrival order of species into a community alters plant–plant interactions and community assembly. Theoretically, priority effects can have lasting effects on ecosystems and will likely be altered as the risk of invasion by exotic species increases. It is difficult to predict how and when priority effects occur, as experimental reconstruction of arrival order is often difficult in adequate detail. As a result, limited experimental studies have explored priority effects on plant community assembly and plant invasions. To determine if and how priority effects affect the success of invasive species, we conducted a greenhouse study exploring how the arrival order of an invasive grass, Bromus tectorum, affects productivity and community composition when grown with native grasses. We found evidence for priority effects, as productivity was positively related to dominance of B. tectorum and was greater the earlier B. tectorum arrived. This suggests that priority effects could be important for plant communities as the early arrival of an invasive species drastically impacted the productivity and biodiversity of our system at the early establishment stages of plant community development.  相似文献   
95.
We measured gill slit fluctuating asymmetry (FA), a measure of developmental noise, in adults of three invertebrate deuterostomes with different feeding modes: the cephalochordate Branchiostoma floridae (an obligate filter feeder), the enteropneusts Protoglossus graveolens (a facultative filter feeder/deposit feeder) and Saccoglossus bromophenolosus (a deposit feeder). FA was substantially and significantly low in B. floridae and P. graveolens and high in S. bromophenolosus. Our results suggest that the gills of species that have experienced a relaxation of the filter feeding trait exhibit elevated FA. We found that the timing of development of the secondary collagenous gill bars, compared to the primary gill bars, was highly variable in P. graveolens but not the other two species, demonstrating an independence of gill FA from gill bar heterochrony. We also discovered the occasional ectopic expression of a second set of paired gills posterior to the first set of gills in the enteropneusts and that these were more common in S. bromophenolosus. Moreover, our finding that gill slits in enteropneusts exhibit bilateral symmetry suggests that the left‐sidedness of larval cephalochordate gills, and the directional asymmetry of Cambrian stylophoran echinoderm fossil gills, evolved independently from a bilaterally symmetrical ancestor.  相似文献   
96.
Recent advances in artificial intelligence show tremendous promise to improve the accuracy, reproducibility, and availability of medical diagnostics across a number of medical subspecialities. This is especially true in the field of digital pathology, which has recently witnessed a surge in publications describing state-of-the-art performance for machine learning models across a wide range of diagnostic applications. Nonetheless, despite this promise, there remain significant gaps in translating applications for any of these technologies into actual clinical practice. In this review, we will first give a brief overview of the recent progress in applying AI to digitized pathology images, focusing on how these tools might be applied in clinical workflows in the near term to improve the accuracy and efficiency of pathologists. Then we define and describe in detail the various factors that need to be addressed in order to successfully close the “translation gap” for AI applications in digital pathology.  相似文献   
97.
Journal of Computational Neuroscience - Miniature yoked eye movements, fixational saccades, are critical to counteract visual fading. Fixational saccades are followed by a return saccades forming...  相似文献   
98.
Habitat fragmentation has negative consequences on threatened and endangered species by creating isolated populations. The Texas horned lizard (Phrynosoma cornutum) is experiencing population declines and localized extirpations throughout its range and has been classified as a species of greatest conservation need in Oklahoma, USA. Younger age classes have been poorly studied but may be vital to the stability of remaining populations. To address gaps in knowledge concerning subadult (hatchling and juvenile) morphometrics, survivorship, and home range sizes, we studied 2 cohorts of subadults, for 2 years each, covering their hatching and juvenile years (2016–2019). We used a combination of radio-telemetry and novel harmonic radar methodology to study a closed population of Texas horned lizards in 15 ha of native grassland at Tinker Air Force Base, Oklahoma. Population abundance for adults and juveniles was estimated as 56.5 ± 5.5 lizards and density as 7.96 lizards/ha. Our lowest estimates of survival indicated an average survival probability for the hatchling life stage of 0.285 (95% CI = 0.15–0.44), which is lower than for adults on the site. Average home range size increased from hatchling to adult life stages. Our results will have an immediate effect on the planning and assessment of ongoing headstart and management programs for Texas horned lizards. © 2021 The Authors. The Journal of Wildlife Management published by Wiley Periodicals LLC on behalf of The Wildlife Society.  相似文献   
99.
Nutrient enrichment can reduce ecosystem stability, typically measured as temporal stability of a single function, e.g. plant productivity. Moreover, nutrient enrichment can alter plant–soil interactions (e.g. mycorrhizal symbiosis) that determine plant community composition and productivity. Thus, it is likely that nutrient enrichment and interactions between plants and their soil communities co-determine the stability in plant community composition and productivity. Yet our understanding as to how nutrient enrichment affects multiple facets of ecosystem stability, such as functional and compositional stability, and the role of above–belowground interactions are still lacking. We tested how mycorrhizal suppression and phosphorus (P) addition influenced multiple facets of ecosystem stability in a three-year field study in a temperate steppe. Here we focused on the functional and compositional stability of plant community; functional stability is the temporal community variance in primary productivity; compositional stability is represented by compositional resistance, turnover, species extinction and invasion. Community variance was partitioned into population variance defined as community productivity weighted average of the species temporal variance in performance, and species synchrony defined as the degree of temporal positive covariation among species. Compared to treatments with mycorrhizal suppression, the intact AM fungal communities reduced community variance in primary productivity by reducing species synchrony at high levels of P addition. Species synchrony and population variance were linearly associated with community variance with the intact AM fungal communities, while these relationships were decoupled or weakened by mycorrhizal suppression. The intact AM fungal communities promoted the compositional resistance of plant communities by reducing compositional turnover, but this effect was suppressed by P addition. P addition increased the number of species extinctions and thus promoted compositional turnover. Our study shows P addition and AM fungal communities can jointly and independently modify the various components of ecosystem stability in terms of plant community productivity and composition.  相似文献   
100.
Three fixation issues related to immunostaining are discussed here: 1) Generally, a tissue block is fixed, then embedded and sectioned (pre-fixation). The type of fixative applied, crosslinking or coagulating, has an impact on selecting an epitope retrieval method. Individual antigens have a fixation–retrieval characteristic. 2) A long fixation time, especially with crosslinking fixatives, may compromise the result of immunostaining. This negative effect varies among different antigens and can be partially restored by applying a more sensitive/efficient detection system such as tyramide amplification. 3) Sections cut from a fresh frozen tissue block usually are acetone fixed (post-fixation). This was accepted as the “gold standard” for a long time. Post-fixation, however, may have serious consequences for preservation of small peptides leaking from the cut open cells, whereas this is not the case with pre-fixed intact cells. Consequently, the concept of an acetone post-fixed cryostat tissue section as “gold standard” no longer exists and a more appropriate use of the terms immunohistochemistry and immunocytochemistry therefore seems justified. For many antibodies, it is not known whether a formalin fixed, paraffin embedded tissue specimen is appropriate. Suggestions are made for creating a positive control cell block for testing such antibodies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号